Spatial Working Memory Deficits in the Relatives of Schizophrenic Patients

Sally Park, Ph.D, Philip S. Heilman, Ph.D, Patricia S. Goldman-Rakic, Ph.D.

Background: Studies in nonhuman primates provide evidence that intact spatial working memory depends on the integrity of specific areas in the prefrontal cortex. Patients with schizophrenia have been shown to be impaired on spatial working memory tasks. Relatives of schizophrenic patients show a range of cognitive deficits; in the absence of clinical symptoms (e.g., thought disorder, eye tracking dysfunctions). We predicted that a significant proportion of relatives of schizophrenic patients would show deficits in working memory as measured by a delayed response task.

Methods: In experiment 1, we tested 18 schizophrenic patients, 12 first-degree relatives of schizophrenic patients, and 18 normal control subjects on an oculomotor delayed response task. In experiment 2, we assessed the performance of another group of 12 first-degree relatives of schizophrenic patients and 16 different normal control subjects on a visual-manual delayed response task.

Results: Relatives of schizophrenic patients showed significant deficits in working memory on both the oculomotor and visual-manual delayed response tasks.

Conclusions: Some relatives of schizophrenic patients are impaired on tasks that tap spatial working memory and that implicate the prefrontal system. The delayed response paradigm may be useful in elucidating the multidimensionality of the schizophrenic phenotype.

From the Department of Psychology and Institute of Neurosciences, Northwestern University, Evanston, Ill. (Dr. Park), the Department of Psychology, Harvard University, Cambridge, Mass., and the Laboratory of Psychology, Massachusetts General Hospital, Boston, Mass. (Dr. Heilman); and the Section of Neuropsychology, Yale University School of Medicine, New Haven, Conn. (Dr. Goldman-Rakic).

One of the cognitive deficits of schizophrenia is a dysfunction of working memory that leads to a breakdown of behaviors guided by internal representations. Neural anatomical and neurophysiological observations suggest an important role in the prefrontal cortex in working memory deficits. In the human monkey, lesions in the dorsolateral prefrontal cortex, in particular, the regions of the principal sulci, lead both to severe deficits in spatial working memory, as assessed by various delayed response tasks (DRT's), and to some symptoms that resemble those of schizophrenics, such as distractibility and perseveration.

In an earlier study, we developed a human analogue of the oculomotor delayed response paradigm to test whether schizophrenic patients show spatial working memory deficits. We reported that schizophrenic patients were significantly impaired in a memory-guided DRT, whereas the sensory modality was visual or bimodal, but showed almost no impairment in a sensory-guided DRT. Bipolarpatients, in contrast, showed no impairments on the memory-guided DRT. We concluded that (1) schizophrenic patients have a deficit in the representational guidance of behavior that is independent of the motor system itself and (2) this impairment is not restricted to the oculomotor system. The working memory deficit, as assessed by the memory-guided DRT, is consistent with evidence that implicates prefrontal dysfunction in schizophrenia. Schizophrenic patients in our sample also showed deficits on the oculomotor DRT.

Some of the healthy relatives of schizophrenic patients show some brain-related abnormalities. For example, a disorder of visual pursuit eye movements is present in nearly half of the first-degree relatives of schizophrenic patients in the absence of clinical symptoms of schizophrenia, whereas the prevalence of this eye tracking disorder in the normal population is only about 8%. Similarly, a significant number of thought disorder in about half of the first-degree relatives has also been reported. The existence of eye tracking dysfunctions and thought disorder in a substantial proportion of these relatives cannot be attributed to medication effects, since the effects of the drugs used to treat schizophrenia

Arch Gen Psychiatry 32:821-838
education was 14.2 (2.1) years, and their mean WAIS verbal IQ score was 105.0 (2.3). The mean age of the normal control subjects was 24.8 (6.0) years, their mean education was 14.7 (2.8) years, and their mean WAIS verbal IQ score was 113.0 (10.9). There were no statistically significant differences between the three groups in age, WAIS verbal IQ score, or education level, nor was there any effect of these variables on the principal dependent variables of the DRT.

Oculomotor DRT

Apparatus. An infrared eye monitoring system (from Inc, Cambridge, Mass), which tracks the difference between the pupil and corneal reflections, was used. An infrared light source was placed in front of the stimulus display monitor, facing the subject. The reflected infrared light from the right eye of the subject was recorded by a video camera with an infrared filter. The video camera was connected to an infrared 8K-420 pupil/corneal reflection tracking system, which recorded the positions of the center of the pupil and a bright corneal reflection moving over the pupil. The spatial difference between the pupil and the corneal reflection gives the direction and magnitude of the eye movement. This method yields a linear representation of the subject's eye position within ±1° of visual angle. Within the linear range, the accuracy isbetter than 1°.

The pupillomeric tracking system was connected to a Macintosh II computer, which recorded and stored the eye position information (x and y coordinates), and to a television monitor, which allowed the experimenter to observe the right eye during the experiment. To take account of small head movements, the pupil/corneal tracker was connected to an Incon 550-520 Autotrack/Autostat system, which calculated the subject's point of regard with respect to the stimulus.

Calibration was performed by asking subjects to focus on five successive experimenter-defined positions on the stimulus display screen: center, upper left, lower left, upper right, and lower right. We used the autotracking system, which calculates the eye position information and calibration position information, to compute the points of regard for subsequent eye movements.

After the calibration, practice trials were performed to ensure that all subjects understood the procedure. Eye movements were monitored on the television screen to ensure that the subject was fixating at the center when each trial began. Further details can be found in previous articles.

Procedure. Subjects sat with their heads stabilized by a chin and head rest in front of a stimulus display monitor. A red fixation dot subtending approximately 0.5° of visual angle appeared in the center of the stimulus display screen. The target was a small black circle subtending about 2° of visual angle. The location of the target varied randomly from trial to trial. The distance between the fixation point and any target location was 12° of visual angle.

Subjects were asked to look at the fixation point in the center of the screen. When they were ready to be
The experimenter clicked a mouse to initiate a trial. In the oculomotor memory task, a target (black circle) appeared on the screen for 200 milliseconds in one of the eight possible locations, long enough for it to be seen and identified but too short for an eye movement to be made to it. There were eight possible target locations, equidistant from one another, as the circumference of an imaginary circle. After the presentation of each target, and with the subject continuing to look at the center of the screen, a 10-second delay period followed during which the subject performed a concurrent "category shift" task that forced the subject to shift semantic categories. For example, for the category animals, animal names (e.g., "tiger," "dog") were listed consecutively, one each second, and occasionally a noncategory word (e.g., "car") was flashed, requiring the subject to signal recognition of the noncategory word. A detailed description of the concurrent task is found in Park and Holzman and in Park. This procedure prevented rehearsal and thus circumvented the use of working memory without verbal or other mnemonic mediators and also forced the subjects to fixate in the center of the screen during the delay period. This task does not affect spatial working memory performance. After the delay period, the fixation point and eight "reference" circles (empty rather than black) appeared on the screen. Subjects were required to move their eyes to the position that the target circle had occupied; this was a memory-guided eye movement, not a reflexive saccade. If subjects looked at the correct target position, the reference circles remained on the screen until the subject looked at the correct position. The eye positions during this period were recorded every 20 milliseconds. If the subject did not look at the correct position within 10 seconds, the reference circles disappeared and the red fixation dot reappeared, indicating that a new trial could begin. Subjects rested after every 10 trials. Eye position was recorded after each rest period.

All subjects were also tested on an oculomotor memory control task. This task was identical to the oculomotor memory task except for one aspect; the target remained on the screen at all times. Subjects were required to move their eyes to the target itself during the delay period. This task required no memory since the target was always present. Figure 1 shows the schematic plan of the experiment.

The order of presentation of the oculomotor memory and the oculomotor memory conditions was counterbalanced across subjects. Each task consisted of 64 trials, eight for each target location. All subjects gave written informed consent. There were 16 practice trials before the main testing began.

Measures. Accuracy (percent correct) and response times (in milliseconds) of correct trials were recorded. A response was scored as correct only if an eye movement was made, the eye direction being within 1° of the center of the correct target position. If the eye moved to a wrong position first and then later moved to the correct target position, the trial was counted as incorrect. Response times were measured from the end of the delay period to the

Figure 1. Schematic plan of the experiment.

Table 1 presents the mean accuracy and response times of the three subject groups for the two DRTs.

Results

Accuracy in the oculomotor memory task, schizophrenic patients had the lowest percentage of correct responses (mean, 71.4%; SD, 16.0%; normal control: highest percentage (mean, 95.2%; SD, 4.9%), and relatives fell in between (mean, 89.8%; SD, 7.1%). There were no group differences on the oculomotor memory task, all groups having scored above 90% correct.

The statistical significance of differences in performance of the groups was compared using three-way repeated-measures analysis of variance. All subjects, regardless of group, were significantly more accurate on the memory task than on the memory task, as shown by a main effect of the type of task (F[1,48]=9.15, P<0.01; effect size, 0.18) and a main effect of subject groups (F[3,48]=16.3, P<0.01; effect size, 0.64). The groups differed significantly in accuracy on the oculomotor memory task (F[1,48]=23.9, P<0.01; effect size, 0.60) but not on the oculomotor control task (F[2,48]=2.44, P>0.05; effect size, 0.14). Group-by-task interaction: (F[2,48]=22.6, P<0.01; effect size, 0.71).

Relatives of schizophrenic patients were less accurate than normal controls on the oculomotor memory task.
Table 1. Mean Accuracy and Response Times of Subjects on the Declarator Delayed Response Tasks in Experiment 1

<table>
<thead>
<tr>
<th>Memory Task</th>
<th>Sensory Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declarator’s success</td>
<td>71 (6.02)</td>
</tr>
<tr>
<td>Failure</td>
<td>70 (5.94)</td>
</tr>
<tr>
<td>Sensory Task</td>
<td>95 (2.60)</td>
</tr>
</tbody>
</table>

% Correct (SD) | Response Times (ms) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Declarator’s success</td>
<td>85 (2.24)</td>
</tr>
<tr>
<td>Failure</td>
<td>85 (2.24)</td>
</tr>
</tbody>
</table>

The results are identical to those obtained with the parametric analyses of variance. The distribution of correct scores is shown by individuals in the three subject groups in Figure 2.

The 15 relatives were not from 15 different families. Six subjects in the relative group were siblings of six schizophrenic patients who were not available for this study. The remaining nine relatives came from five families.

From one family, there were a father, mother, and sister of a schizophrenic patient; the patient had a very poor working memory (50.4% correct). The mother’s working memory accuracy score was 96.6%, and both the father and the healthy sibling had 84.4% accuracy, which is below the lowest score of the normal group.

From a second family there were two brothers of a schizophrenic patient. The patient and one brother had a very poor working memory (73% and 61.3% accuracy, respectively). The second brother had very few errors on the acalculia DRT (93.8%).

From a third family there were two relatives, both siblings of a schizophrenic patient. All three members of this family had high numbers of errors on the DRT (64% +6% correct for the patient; and one sister, 71% [3% for the sister]).

There were two families from which one sibling each was tested. In one of these families, the patient had a very poor acalculia DRT performance (57% correct), but his healthy sister had few errors on the DRT (93.8%). In the second of these two families, the patient had many errors on the DRT (75% correct). His unaffected brother had few errors on the DRT (96% correct).

If one selects one random sibling of each schizophrenic patient, the results do not change for these 11 relatives. It therefore appears that the distribution of impaired DRT performance is not unduly weighted by one or two families.

Types of Errors. We grouped the response errors into two kinds, those that are immediately corrected and those that are not corrected during the maximum period allotted for responses (10 seconds). Errors that are immediately corrected are likely to arise from temporary distractions or failures to inhibit irrelevant response tendencies, whereas we labeled these errors E1. Errors that are not corrected even though subjects make repeated efforts to recall the position of the target are more likely to be caused by a loss of spatial representation of the target during the delay period; we labeled these errors E2. Park and O’Connel reported that these two major types of errors have different distributions in schizophrenic patients, bipolar patients, schizotypal subjects, and normal controls.

The mean (SD) number of E1 errors for schizophrenic patients in this study was 3.4 (2.3) and the median was 3.4 while for the normal subjects, the mean was 1.8 (1.9) and the median was 1.9. For the relatives, the mean was 2.4 (0.7) and the median was 2.4. The schizophrenic patients made significantly more E1 errors than did the normal subjects and the relatives (F[2,48]=21.1, P<0.003), but normal subjects and relatives did not differ significantly in the number of E1 errors (Nonparametric statistical analysis: Kruskal-Wallis test) gave identical results. This finding suggests that schizophrenic patients are more susceptible to temporary distractions and to interference by irrelevant response tendencies than are relatives or normal control subjects.

The distribution of E2 errors, however, was quite different. Whereas normal subjects only occasionally made such errors (mean E, 1.0; SD, 1.9; median, 1.0), the mean number of E2 errors for the schizophrenic patients was 6.07 (SD, 4.30; median, 2.3) and for the relatives it was 3.3 (SD, 2.85; median, 4). These differences are statistically significant (F[2,48]=11.9, P<0.003), indicating that the patients and the relatives made significantly more E2 errors than did the normal group. Nonparametric tests of these distributions (Kruskal-Wallis test) gave identical results. The proportion of subjects in each group making more than two E2 errors was instructive: three (17.6%) of 18 normal subjects (17.6%) compared with none (0%) of 18 schizophrenic patients and eight (53.3%) of 15 relatives. All schizophrenic patients and seven of the relatives did not differ on the number of E2 errors, indicating that they are both prone to errors at one time but differ in the delay period.

Response Times. Table 1 shows that the groups differed in response times. The schizophrenic patients were the slowest and the relatives were intermediate between the patients and the normal control subjects. The significant difference of the two control groups was tested with a nonparametric analysis of variance and by a nonparametric test (Kruskal-Wallis test).

The normal subjects were fastest, relatives next, and schizophrenic patients slowest on both the sensory and memory components of the procedure, as reflected in the significant main effect of subject groups (F[2,48]=11.9, P<0.001), but there was no main effect of task type (F[2,48]=1.9, P>0.1), and there was no significant interaction between subject groups and task type (F[2,48]=1.1, P>0.34). Further analyses of simple effects showed that schizophrenic patients were slower than both the normal controls (F[1,31]=6.0, P<0.05) on the acalculia memory task. On the sensory task as well, schizophrenic patients were slower than both the normal controls (F[1,31]=5.6, P<0.05) and the relatives (F[1,31]=5.7, P<0.05). The relatives and the normal controls did not differ significantly in response times in the motoric tests, gave identical results, except for the differences between normal controls and relatives on the sensory task.
Figure 2. Distribution of accuracy scores of normal controls, schizophrenic patients, and relatives of schizophrenic patients performing the auditory memory delayed response task (DRT) in experiment 1.

where the relatives showed a nonsignificant but borderline tendency to be slower in response time.

Comment

Our data indicate that some first-degree relatives of schizophrenic patients show spatial working memory deficits, as assessed by an auditory DRT. We previously reported that schizophrenic patients and outpatients show working memory deficits, but in those studies it was not possible to rule out the possible effects of medication even though clinical state was shown not to be a decisive factor. In the present experiment, we observed the delayed response deficits in nonpsychotic relatives of schizophrenic patients. It therefore appears that such abnormalities occur in the absence of any neuroleptic exposure and in the absence of psychotic symptoms. Schizophrenic patients made more E errors, but the normal controls and relatives seldom made this type of error.

This type of error may reflect temporary inefficiency, perhaps secondary to state factors. In contrast, both the schizophrenic patients and their relatives made significantly more E errors, indicating that both the schizophrenic patients and the relatives are susceptible to loss of spatial representations during the delay period. Because the sample size was small, we conducted a second delayed-response experiment using a different sensory modality in new groups of relatives and controls.

EXPERIMENT 2: VISUAL-MANUAL DRT

Results from experiment 1 showed that the first-degree relatives of schizophrenic patients, like schizophrenic patients themselves, are impaired on the auditory motor DRT. In experiment 2, subjects were required to respond with their hands rather than with their eyes. In this version of the DRT, targets were presented visually and the responses were made by hand movements, a procedure that requires a crossmodal transfer of spatial representation. For this experiment we recruited another group of first-degree relatives of schizophrenic patients and another normal control group.

Subjects

We recruited 12 first-degree relatives of schizophrenic patients (seven women), with only one relative per family. None of these subjects had participated in experiment 1. Sixteen normal control subjects (seven women) were recruited from Zurich, Switzerland. The control subjects, none of whom participated in experiment 1, were nurses, clerical workers, or students. They were selected if there was no Axis I DSM-III-R psychiatric disorder in any first- or second-degree relative, as determined by a brief psychiatric interview. They had no evidence of organic brain damage and were not mentally retarded. The mean age of the normal control subjects was 36.7 (11.3) years, and their mean education was 14.0 (3.3) years. The mean age of the relatives was 34.9 (11.1) years, and their mean education was 35.4 (3.0) years. There was no significant difference between the two groups in age (F1,25=1.88, P>0.18) or education level (F1,25=1.19, P>0.28).

Visual-Manual DRT

Procedure and Apparatus: All procedures were identical to those described in experiment 1, except for the modality of response. Subjects responded by touching a position on a computer screen rather than by an eye movement.

Subjects sat with their heads steady on a chin and headrest in front of a stimulus display monitor. The stimulus display monitor was fitted with a touch screen (AcuTouch, Ellinor Technology, Berkeley, England). The touch screen consisted of a glass plate covered with a light-reflecting plastic cover sheet. Conductive coatings were applied to the glass plate and the plastic sheet so that light finger pressure could cause internal electrical contact at the point of touch. This voltage was then digitized. Position accuracy was better than ±4.6 mm (13 pixels), as measured on a multisample sampling basis. Calibration procedure involved touching four reference points on the touch screen. Calibration was performed before the subject began the experiment.

Subjects stared fixated at the center of the screen, and when they were ready to begin, the experimenter clicked a mouse to initiate a trial. In the visual-manual memory task, a target appeared on the screen for 200 milliseconds. Immediately after the target presentation, there was a 10-second delay period, during which the subject performed the category shift task (the ruler task). After the delay period, the fixation point and eight "reference" circles (empty rather than black) appeared on the screen. Subjects were required to touch the screen at the remembered position of the target. If they touched the correct target position, the screen blurred and the next trial could begin. If the subject did not touch the correct position, the reference circles remained on the screen until the subject chose the correct position, or until 10 seconds had elapsed, whichever was sooner.
To control for the sensorimotor component of the visual-manual memory task, a sensory control task was conducted. The sensory control task was identical in the memory task except for one aspect: the target remained on the screen for 5s. Subjects were required to touch the target itself after the delay period. This task required no memory since the target was always present.

The order of presentation of the memory and sensory conditions was counterbalanced across subjects. There were 64 trials on the memory task and 48 on the sensory task, each at each location in both tasks. All subjects gave written informed consent. There were 16 practice trials before the main body of testing began, to ensure that the subjects understood the task.

Measure. Accuracy (percent correct) and response times (in milliseconds) of correct trials were recorded. A response was scored as correct only if the subject touched within 1.5° of the center of the target position and if the finger moved three directly. If the finger moved in a wrong position first and then later moved to the correct target position, this response was counted as incorrect.

Results

Table 2 presents the mean accuracy scores of the two subject groups. Reliabilities of schizophrenic patients were less accurate than the normal controls on the visual-manual memory DRT (88.3% vs. 94.9%) but not the sensory DRT (98.2% vs. 98.4%). The differences between the two groups were tested by a repeated-measures analysis of variance. There was a main effect of subject group (F(1,28)=10.04; P<.001; effect size, 0.33), a main effect of the task type (F(1,28)=68.3; P<.001; effect size, 0.88), and a subject-by-task interaction (F(1,28)=4.8; P<.01; effect size, 0.27), indicating that the relieves of schizophrenic patients were significantly less accurate than the normal controls in raising the memory-guided hand movements (F(1,28)=12.96; P<.01; effect size, 0.70), but the two groups did not differ on the memory-controlled task (F(1,28)=1.23; P>.27). The nonparametric tests (Mann-Whitney U test) gave identical results. Figure 3 shows the distribution of accuracy scores on the memory-guided DRT for the two subject groups.

Types of Errors. We examined the distributions of the two types of errors, E1 and E2, errors. The relieves made more E1 errors than did the normal controls. The mean (SD) number of E1 errors for the normal control subjects was 1.94 (1.44) for the relieves the mean number of E1 errors was 6.24 (4.44). This difference is statistically significant (F(1,28)=16.9, P<.001). A nonparametric test gives a similar significant value. In experiment 2, then, the relieves made more E1 errors than did the relieves in experiment 1.

The mean number of E2 errors for the normal group was 0.44 (0.73); the mean number of E2 errors for the relieves of schizophrenic patients was 1.4 (1.10). This group difference was statistically significant whether tested by a parametric analysis of variance (F(1,28)=5.92; P<.05) or a nonparametric Mann-Whitney U test (51% vs. 16 normal controls compared with 15 (34%) of 16 relieves of schizophrenic patients made more than two E2 errors. No normal control made more than two E2 errors, compared with four (25%) of 16 relieves of schizophrenic patients.

These results are consistent with those obtained in experiment 1. Some relieves of schizophrenic patients perform poorly on tasks that require spatial working memory regardless of the modality of the response.

Response Times. Table 2 shows that the relieves were slower than the normal controls on both the memory and sensory tasks. A repeated-measures analysis of variance revealed that there was a main effect of subject group on the response times (F(1,28)=11.3, P<.001) but no main effect of the task (F(1,28)=0.32; P>.7) and no interaction between subject group and the task (F(1,28)=0.22; P>.62). One-way analysis of variance revealed that the two subject groups differed on the memory task (F(1,28)=6.67; P<.05) and only on the sensory task (F(1,28)=1.93; P<.001). The relieves were significantly slower than the normal controls on both tasks (1317 and 1311 milliseconds vs. 1120 and 1078 milliseconds on the memory and sensory tasks, respectively). This result differs from that found in experiment 1, in which there was no global occluder response time difference between the normal controls and the relieves, although there was a trend in the same direction.

Oculomotor and Visual-Manual Spatial Working Memory Performance in the Relieves. We compared the accuracy of the relieves from experiment 1 and experiment 7. There were no differences between the two groups of relieves on the working memory task (F(1,28)=0.12; P>.7) or the sensory control task (F(1,28)=0.10; P>.91). As far as accuracy of delayed response is concerned, it does not seem to matter whether the actual test is conducted with the oculomotor paradigm or with the visual-manual paradigm. Similarly, dissociation of prefrontal lesions in experimental primates indicate working memory deficits whether the tasks used to measure these difficulties require occluder- or manual responses.

We did not directly compare the response times because of the different inherent speed requirements for making an eye movement and a hand movement. Instead, we computed a relative change in the response times.
in the memory-guided task compared with the sensory control task for each subject, as follows:

\[
\% \text{ increase in RT} = \frac{\text{RT (Memory Task)} - \text{RT (Sensory Task)}}{\text{RT (Sensory Task)}} \times 100
\]

where RT indicates response time.

On the occlusion task, relatives had a 6.4% increase in response time, and on the visual-manual task, they had a 2.0% increase in response time. The magnitude of the change in response time was not statistically significant (F(1,26) = 2.1, P > .05).

COMMENT

In this study, we examined spatial working memory in first-degree relatives of schizophrenia patients. On the occlusion working memory task, we observed that a significant number of these relatives had impaired performance. Similarly, on the visual-manual working memory task, the relatives were less accurate than the normal controls.

We classified the types of errors into E1 and E2 errors. We believe that different psychological processes underlie these two types of errors. In the case of E1 errors, temporary distractions may be the main source of error. In the case of E2 errors, however, the spatial memory representation is not recoverable, which denotes a failure to maintain the spatial representation as working memory.

In experiment 1, we found that schizophrenic patients made significantly more E1 errors than did normal subjects or the first-degree relatives. Such evidence of temporal insufficiency is not unexpected in this group. What is noteworthy and thus far not reported, however, is the appearance of large numbers of E2 errors not only among the patients but also among a large proportion of their relatives. This result, found in both experiment 1 and experiment 2, suggests that in some of these otherwise clinically normal relatives, there is a detectable dysfunction in effects to hold a spatial representation "on line." The patients, as noted above, show a significant tendency to show temporal insufficiency in experiment 1. The same tendency in the relatives was found in experiment 2 but not in experiment 1. The normal controls, however, showed no increase in these E2 errors in experiment 2. It is quite possible that the extent of a second response system (hand movement to the target), which introduced a second modality into the response process, complicated the performance for the relatives compared with the simple eye movement response in experiment 1. This hypothesis will be tested in further studies.

One may properly wonder whether the relatives who showed the working memory dysfunction have schizophrenia spectrum disorders. Although systematic examination of the relatives for Axis I disorders, particularly schizophrenia personality disorder was not undertaken, we offer a tentative answer, pending such examination, which is now under way in our laboratory. It is possible that some of the relatives have schizophrenia characteristics. For at least two reasons, however, it would be implausible to assume that impaired working memory is a function of schizophrenia in this population of relatives. First, the prevalence of schizophrenia personality disorder in the first-degree family members of a schizophrenic patient ranges from about 7% to 14%. From these estimates, we would expect at the most two relatives in each of the experiments to have schizophrenia personality disorder in the present experiments. However, six (40%) of 15 relatives in experiment 1 and nine (50%) of 12 relatives in experiment 2 had significant working memory impairments (Figures 2 and 3), with impairment defined as scores greater than 2 SDs from those of their specific normal population comparison group. It is noteworthy, moreover, that this study examined the working memory of an unselected sample of relatives, who were essentially volunteers. Schizophrenic traits, such as perceptual aberrations, suspiciousness, social anxiety, guiltlessness, and lack of motivation, are among those personal qualities that would make it less likely for such people to volunteer for a study such as the present one. The present cohort of relatives thus probably contains even fewer cases (too indicated by the low prevalence of schizophrenia personality disorder, although some schizophrenics into may exist in a subgroup of relatives. Since about 40% to 50% of the relatives in experiments 1 and 2 had working memory dysfunction for greater than the required prevalence of schizophrenia personality disorder in the biological relatives of patients with schizophrenia, we would here offer for a conservative estimate of the prevalence of the relatives with working memory dysfunction in the present study do not have schizophrenic spectrum disorder.

Second, in a previous study, otherwise normal college students who were high on an imagery tapping experience of perception of processing produces decreased functioning of schizophrenia, made significantly more working memory errors as a group than did those who were selected for having very few imagery tapping experience. However, only about 25% of these schizophrenic students had working memory impairments, and several students with no schizophrenia sign also had working memory impairment.
The working memory system may be said to operate like a "reverse working" pad. By providing temporary and limited access to long-term or associative memory, it needs to be wiped clean or updated to be ready to accept new stimuli for temporary storage to guide action. In Ruddle's model, 15 the working memory system is supported by modality-specific "slave" or auxiliary systems that allow for focused rehearsal of information in the buffer, such as repeating the telephone number just found in the telephone book or visualizing a spatial array. By employing a discriminator task, our experimental paradigm removed the possibility of rehearsals and therefore the use of these auxiliary aids to working memory and allowed us to detect significant impairments. It is quite possible that the relatives with impaired capacity on the DTR, who otherwise seem to function adequately, rely on these "unilateral" auxiliary systems to keep spatial working memory intact.

It is noteworthy that a subset of the first-degree relatives of schizophrenic patients show deficits in working memory. These relatives are clinically unaffected and do not manifest any DSM-III-R Axis I conditions. Some may, however, have or have had Axis II conditions, and a further study of this possibility is needed. This pool of subjects has generally been neglected for psychological investigation. Psychologists, and particularly genealogists, have typically focused their attention on the sick patients and on families with the highest concentrations of morbidity. We have argued that a thorough study of relatives, including those who appear to be well, can offer a richer yield in the search for insights into the disease process, one that penetrates beyond the obvious phenotypic symptoms. In this search, psychology, the neurosciences, and related disciplines have much to contribute in exploring the hidden nature of the phenotype. One of these has been the study of everyday thinking processes. This area of research may take place alongside smooth pursuit abnormalities as an aid to illuminating the pathophysiologic characteristics of schizophrenia but also in characterizing the multidimensional qualities of the schizophrenic phenotype to trace the transmission of schizophrenia-related genes.

Accepted for publication July 6, 1995

This research was supported in part by a Young Investigator grant from the National Alliance for Research on Schizophrenia and Depression (NARSAD), Chicago, Ill. by a fellowship award from the Stanley Foundation, Armonk, N.Y. By a Long-term fellowship from the Human Frontiers of Science, Tokyo, Japan, by a grant from the Swiss National Science Foundation, Zurich (Dr. Park); and by grants ROI MH 31340, ROI MH 31344, R00 MH 48906, and ROI MH 01260 from the US Public Health Service, Washington, D.C.

We thank Deborah L. Levy, PhD, McLean Hospital, Belmont, Mass; Mark F. Langenbrunner, PhD, Cornell University, Ithaca, NY; Charlotte Symposium, Washington, DC; Clara Lajuncie, Washington University, St. Louis, Mo; and Janet Levy, Watertown, Mass, for their help.

Reprint requests to Department of Psychology, Northwestern University, 2044 Sheridan Rd, Evanston, IL 60208 (Dr. Park).

REFERENCES

